Overview of FAO/IAEA Coordinated Research Project on Crop genotypes Tolerant to low N and P Soils

Joseph Adu-Gyamfi and Gerd Dercon

FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria

23 July 2012

Joint FAO/IAEA Programme

The Presentation

 Introduction
 The CRP, Objectives, Contract Holders and Framework and Research Coordination Meetings

Root Traits for N and P acquisition and utilization
P in common bean and maize
N in maize

Mechanisms of crop adaptation to low N and P

Results and Conclusions

Approaches to Increasing Crop Productivity in Harsh Environments

Development of innovative land (soilplant-water) management that enhances the adaptability of crops

Identify crop plants (species and varieties) with superior root characteristics that better utilize soil water and nutrient resources

Improving Soil conditions for plant growth

Joint FAO/IAEA Programme

Adapting plants to existing soil conditions

Objectives

Develop and validate screening protocols for plant traits that enhance N and P acquisition

Employ screening protocols to identify genotypes with superior N and P acquisition and/or utilization.

Assess the productivity of the selected genotypes on cropping system performance

The CRP (2006-2011)

Research Contract Holders (9) **Agreement Holders (5)**

Burkina Faso Brazil Cameroon China Cuba Ghana Malaysia Mexico Mozambique Australia Benin Germany Kenya Nigeria France Technical Contract Holder (1) United States of America

Joint FAO/IAEA Programme

Framework for the CRP

Research Coordination Meetings

JOINE FAUIL Nuclear Technique

1st RCM, Vienna, 2006

2nd RCM, Morelia, Mexico, 2008

3rd RCM, Maputo MOZ, 2010

4th RCM, Vienna, 2011

Root Traits for P Efficiency by legumes

Joint FAO/IAEA Programm

Root Architecture

Basal Root Whorls Number (BRWN)

Root Traits and P acquisition

Category

phene synergism for P acquisition

3 RILs per phenotype, field study in low P soil in Mozambique

Up to 30% of P in plant tissue can be absorbed by root hairs

Root traits contributing to enhanced acquisition of N from low N soils by maize

Estimating root traits with enhanced N acquisition by maize in a field experiment

Specified branching angle of 4 temperate maize cultivars grown at low N (100 μ M N)

From W Horst

CONCLUSIONS

Branching angle interval was identified as a suitable root selection parameter for soil N use efficiency

Adventitious rooting and root hair formation were identified as suitable plant parameters for selecting P use efficiency

Protocols for characterization of root traits contributing to enhanced phosphorus acquisition developed are available on http://www. naweb.iaea.org/nafa/swmn/index.hmtl

Joint FAO/IAEA Programme

